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Abstract
Many industrial processes are multi-input multi-output (MIMO) systems, in which the order and/or the relative degree are
uncertain, and the parameters cannot be obtained accurately. In this paper, for such MIMO systems, the decentralized low-
order active disturbance rejection control (ADRC) scheme is designed with tuning method, and the whole design procedure is
verified on the plants with/without the time delay. A necessary condition is derived based on the definition of numerator’s zero-
order coefficient (NZC) matrix for the closed-loop stability. It is proved that the low-order ADRC scheme can reject the
interaction disturbance and guarantee the closed-loop stability for the open-loop stable MIMO plants. This design method is
capable of guaranteeing the integrity for the open-loop stable plant with diagonally dominant NZC matrix, which has also
discussed in the simulations. Several numerical new methods have given to show the further capability of the ADRC scheme
to obtain better performances for the systems with/without time delay.

Keywords ADRC .MIMO system . Integrity . Time delay . Parameter tuning

1 Introduction

Most industrial processes have more than one variable in na-
ture, and this fact will increase in future [1]. The decentralized
control structure shows advantages to the control engineers,
since it can be easily understood and implemented in control-
ling the multi-input multi-output (MIMO) process [2, 3]. The
decentralized PID control is one of the most common control

schemes among all kinds of the decentralized schemes (see
[4–7] for examples).

The traditional decentralized approaches can work properly
when the interactions in different channels of the process are
modest [1]. Nevertheless, the MIMO systems present un-
known and complicated couplings among the measurements
and control signals, with the uncertain orders and relative de-
grees. Hence, many scholars are interested in the new tech-
niques for controlling the MIMO system.

The active disturbance rejection control (ADRC) technique
regards the coupling interaction as a part of the uncertainty in
one single channel. The ADRC scheme can observe and reject
the total uncertainty in every channel, which includes both the
internal (parameter or unmodeled dynamics) uncertainties and
the external uncertainties (disturbance) [8–11]. This idea is
very suitable for the decentralized controller design. Hence,
ADRC has been employed for the MIMO systems in many
experiment and simulation researches. The ADRC is designed
for a two-input-two-output process with time delay in [12]. In
[13], two nonlinear ADRCs are designed for the boiler master
fuel control and the turbine load control of the power plant
unit coordinated system. The researches in [14, 15] show that
the linear ADRC can achieve high performance and good
robustness in practical application. And more researches can
be found in [3, 13, 16–18].
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Recently, the theoretical analysis is made for the MIMO
system controlled by the ADRC scheme. The literatures [19,
20] concentrate on the linear form of ADRC. In [19], the
closed loop is proved semi-global stable for a class of lower
triangular MIMO plants, which contains uncertain nonlinear
time-varying dynamics and discontinuous external distur-
bances. In [20], the capability of ADRC is analyzed for several
kinds of nonlinear MIMO systems whose orders and relative
degrees for all channels are equal to the same number. The
nonlinear ADRC for the MIMO system is discussed in the
[21, 22]. In [21], the convergence is investigated for the non-
linear extended state observer (ESO), which is an important
part of the ADRC. In addition, a sufficient condition is given
in [22] for ADRC stabilizing the nonlinear MIMO plant, of
which the relative degree equals the order for every channel.
In the former researches, the orders or the relative degrees of
all the channels in the plant have assumed to know and utilize
to determine the order of ADRC scheme.

However, for many industrial plants, it is costly or difficult
to obtain the precise information of their models, including the
orders and the relative degrees [23]. Even if the model is
exactly known, the order or the relative degree may be a big
number. For example, the order of the accurate model is very
high for a multi machine of power system, since each syn-
chronous generator includes the prime mover, the governor,
and the exciter, and each component contributes to the final
order of the whole model [24]. In fact, the high order is from
the complexity of the structure or dynamics in the equipment,
and more such examples can be seen in [25–27] and the ref-
erences therein. According to the existing theoretical results,
ADRC schemes with high-order observers carry more param-
eters than the low-order ADRC schemes, which are more
difficult for the engineers to design and adjust. Hence, many
ADRC design methods in application (such as [3, 28–30]) do
not require accurate information of the order or the relative
degree, and usually employ the ADRC schemes with low-
order observers.

This paper adopts the engineering experiences in designing
low-order ADRC scheme for uncertain MIMO plants. The
presented ADRC design does not need the information of
the orders or the relative degrees. The stability and the high
integrity of the closed loop are discussed in theory. The suffi-
cient conditions are given for the ADRC closed-loop stability
and the integrity, and a necessary result is established for the
closed-loop stability. The design method and the theoretical
results are all validated in the simulations.

The rest of the paper is arranged as follows: in Section 2,
the problem is formulated by building the controller structure
and making the primary analysis, and the plant models are
given for later use, which are adopted from [3, 31].
Section 3 is on the necessary condition for the closed-loop
stability. In Section 4, the tuning method for the low-order
ADRC scheme is illustrated in the flowchart; the sufficient

condition for the closed-loop stability is established as the
theoretical support; and the method is verified in the simula-
tions of the ADRC based the second-order ESO. Then, theory
and simulations in Section 5 discuss the integrity of the ADRC
closed loop. In Section 6, the decentralized ADRC scheme
with the third-order ESO is illustrated based on the same de-
sign and tuning method. The last section is the conclusion.

2 Control design and preliminary analysis

Consider the MIMO LTI system with the following transfer-
function model

Y
!

sð Þ ¼ H sð ÞU! sð Þ; ð1Þ

w h e r e Y
!

sð Þ ¼ Y 1 sð Þ … Ym sð Þ½ � T a n d U
!

sð Þ ¼
U1 sð Þ … Um sð Þ½ � T are the Laplace transforms of the output
vector y! tð Þ ¼ y1 tð Þ…ym tð Þ½ � T and the input vector u! tð Þ
¼ u1 tð Þ … um tð Þ½ � T ; respectively. The transfer function is

noted by H sð Þ ¼ H−1
D sð ÞHN sð Þ; where

HD sð Þ ¼ diag hD1;…; hDm sð Þð Þ ¼
hD1 sð Þ

⋱
hDm sð Þ

2
4

3
5; ð2Þ

hDi sð Þ ¼ ∑mi
k¼0 hDiks

k ( hDimi ¼ 1 f o r 1 ≤ i ≤ m ) ,

HN(s) = [bijhNij(s)]m ×m, hNij sð Þ ¼ ∑mij

k¼0 hNijks
k (mij ≤mi, hNijmij

≠0; hNij0 = 1, for 1 ≤ i ≤m, 1 ≤ j ≤m), and HD(s) and HN(s)
are left coprime invertible polynomial matrices. Define the
NZC (numerator’s zero-order coefficient) matrix of the plant
(1) as

BP ¼ bij
� �

m�m ¼ HN 0ð Þ;

Moreover, assume detBP ≠ 0.

Remark 1 Since BP is the zero-order coefficient matrix of the
transfer function’s numerator HN(s), it is called the NZC (nu-
merator’s zero-order coefficient) matrix for short in this work.
When m = 1, the plant (1) becomes a SISO system, and the
NZC matrix equals the numerator’s zero-order coefficient
(NZC) defined in the literatures [32, 33]. In fact, the NZC
matrix for the MIMO system is a generalized form of the
NZC for the SISO system.

The objective is to stabilize the plant (1) with the
decentralized ADRC scheme. And the design procedure of
the ADRC is shown in the time domain [9, 10, 34].

For the ith channel of the system (1), the time-domain form
can be written as

y mið Þ
i ¼ − ∑

mi−1

k¼0
hDiky

kð Þ
i þ ∑

m

j¼1
bij ∑

k
0 ¼0

mij

hNijk 0u
k
0ð Þ

j ; ð3Þ
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where y(0) = y and u(0) = u; y kð Þ
i is the k-order derivative of yi(t)

and u
k
0ð Þ

j is the k′-order derivative of uj(t). Due to the lack of

the plant knowledge, the channel may be described by the
dynamic system:

y nið Þ
i ¼ f i þ bEiui; ð4Þ
where ni ≥ 1 is the estimate of the ordermi; bEi is an estimate of
bii; and fi is called the total uncertainty (or total disturbance) in
the ith channel [10]. Specifically,

f i ¼ −y mið Þ
i − ∑

mi−1

k¼0
hDiky

kð Þ
i þ y nið Þ

i þ ∑
m

j¼1
bij ∑

k
0 ¼0

mij

hNijk 0u
k
0ð Þ

j −bEiui;

which consists of all the unknown dynamics and the coupling
terms.

In the ideal case, suppose the value of fi can be obtained in
real time, then the control input ui could be designed as ui
¼ 1

bEi
− f i þ u*i
� �

: Hence, the system (4) becomes

y nið Þ
i ¼ u*i : ð5Þ

Moreover, suppose yi; y
1ð Þ
i ;…y ni−1ð Þ

i are all available, the
ideal control law could be set

u*i ¼ − ∑
j¼1

ni

pijy
j−1ð Þ

i ; ð6Þ

where pi1; pi2;…pini are the controller parameters. Then the

channel i in the closed loop would be

y nið Þ
i ¼ − ∑

j¼1

ni

pijy
j−1ð Þ

i ; ð7Þ

which can be assigned according to the practical requirements.
However, the total uncertainty fi and the derivatives of

yi are usually unmeasurable in practice. Hence, to esti-
mate these variables, the ESO can be designed for the
channel i [9, 10]. In this paper, the following linear ESO
is used:

z˙ i 1 ¼ zi 2−βi 1 zi 1−yið Þ
z˙ i 2 ¼ zi 3−βi 2 zi 1−yið Þ

⋯
z˙ i j ¼ zi jþ1−βi j zi 1−yið Þ

⋯
z˙ i niþ1−2 ¼ zi ni−βi ni−1 zi 1−yið Þ

z˙ i ni ¼ zi niþ1−βi ni zi 1−yið Þ þ bEiui
z˙ i niþ1 ¼ −βi niþ1 zi 1−yið Þ

8>>>>>>>>>><
>>>>>>>>>>:

ð8Þ

wh e r e bEi;βi 1;βi 2…βi niþ1 a r e t h e a d j u s t a b l e
parameters.

If the command signals are given for the ith channel, then
the control law can be designed as

ui¼̂ 1

bEi
−zi niþ1 þ ∑

j¼1

ni

pi j r j−1ð Þ
i −zi j

� � !
ð9Þ

where pi 1; pi 2;…pi ni are the controller parameters; r 0ð Þ
i ¼

ri tð Þ is the reference of the channel i; and r jð Þ
i (j ≥ 1) is the jth-

order derivative of ri(t).
Consequently, the decentralized control scheme of ADRC

is built as i runs from 1 to m. If the ESO works well, the
presented ADRC design can stabilized the MIMO system
without the accurate information about the orders or the rela-
tive degrees.

Combining the plant model and the controller scheme, the
ADRC closed-loop system is obtained:

Y
!

sð Þ ¼ GM sð ÞR! sð Þ ð10Þ

where R
!¼ R1;R2;…Rm½ � T are the Laplace transformations

of the reference signal vector, GM(s) = A(s)(sHD(s)A(s) +
HN(s)BY(s))

−1HN(s)BR(s)A
−1(s),

A sð Þ ¼ diag bE1a1 sð Þ;…bEmam sð Þð Þ;
ai sð Þ ¼ ∑

niþ1

k¼1
∑

niþ1

j¼k
pijβi j−k

 !
sk−1; pi niþ1 ¼ 1; βi 0 ¼ 1;

BY sð Þ ¼ diag bY1 sð Þ;…bYM sð Þð Þ; bYi sð Þ ¼ ∑
j¼0

ni

s j ∑
jþ1

k¼1
βi niþk− jpi k ;

BR sð Þ ¼ diag bR1 sð Þ;…bRM sð Þð Þ; bRi sð Þ ¼ ∑
niþ1

j¼0
βi n− js

j

 !
∑
k¼1

ni

pi ks
k−1

� �
:

Remark 2 Since HN(0) and BY(0) = BR(0) are both invertible,
there is

GM 0ð Þ ¼ A 0ð Þ HN 0ð ÞBY 0ð Þð Þ−1HN 0ð ÞBR 0ð ÞA−1 0ð Þ ¼ I ;

where I represents the unit matrix. Hence, the zero-frequency
gain of the closed-loop system (10) is the unit matrix.

Moreover, several plants are given in Table 1 for later use.

3 Necessary condition for the closed-loop
stability

To make sure of the closed-loop stability, the tuning of bEi
is very important for the low-order ADRC scheme. In the
special case of m = 1, the plant (1) is a SISO system, BP =
b11 is scalar, and bE1b11 > 0 is necessary for the closed-
loop stability [32, 33, 35, 36]. Hence, the sign of bE1 is
uniquely determined by b11 > 0 in the SISO case. The
corresponding necessary result for the MIMO system is
shown by the following theorem.
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Table 1 Plants employed in the simulation examples

Plant
name

Plant transfer function

H0
1

sþ 2

1

sþ 2
1

sþ 2

1

sþ 2

2
64

3
75

H'0

1:2

sþ 2

1:2

sþ 2
1:2

sþ 2

1:2

sþ 2

2
64

3
75

H1

12:8

16:7sþ 1

12:8

16:7sþ 1
12:8

16:7sþ 1

12:8

16:7sþ 1

2
64

3
75

H'1

12:8e−s

16:7sþ 1

12:8e−s

16:7sþ 1
12:8e−s

16:7sþ 1

12:8e−s

16:7sþ 1

2
64

3
75

H2

−2:2
7sþ 1

−2:2
7sþ 1

−2:2
7sþ 1

−2:2
7sþ 1

2
64

3
75

H'2

−2:2e−s

7sþ 1

−2:2e−s

7sþ 1
−2:2e−s

7sþ 1

−2:2e−s

7sþ 1

2
64

3
75

H3

0:126

60sþ 1

0:126

60sþ 1
0:126

60sþ 1

0:126

60sþ 1

2
64

3
75

H'3

0:126e−6s

60sþ 1

0:126e−6s

60sþ 1
0:126e−6s

60sþ 1

0:126e−6s

60sþ 1

2
664

3
775

H4

22:89

4:572sþ 1

22:89

4:572sþ 1
22:89

4:572sþ 1

22:89

4:572sþ 1

2
64

3
75

H'4

22:89e−0:2s

4:572sþ 1

22:89e−0:2s

4:572sþ 1
22:89e−0:2s

4:572sþ 1

22:89e−0:2s

4:572sþ 1

2
664

3
775

H5

0:66

6:7sþ 1

0:66

6:7sþ 1

0:66

6:7sþ 1
0:66

6:7sþ 1

0:66

6:7sþ 1

0:66

6:7sþ 1
0:66

6:7sþ 1

0:66

6:7sþ 1

0:66

6:7sþ 1

2
666664

3
777775
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Theorem 1A necessary condition for the stability of the closed
loop formed by the plant (1) and the ADRC (7)(8) is

detBP ∏
m

i¼1
bEi > 0: ð11Þ

The proof is given in the appendix.
According to Theorem 1, once (11) is not satisfied, the

ADRC closed loop will be unstable. Compared with the nec-
essary condition for the SISO case, the condition in Theorem
1 is relaxed, even the sign of bEi for channel i is not uniquely
determined for some systems. The plant H0 in Table 1 is an
example.

The following two kinds of parameters can be applied to
the plantH0:

bE1 ¼ 1; bE2 ¼ −5; ni ¼ 1; pi1 ¼ 10;βi1 ¼ 100;βi2

¼ 1000; i ¼ 1; 2; ð12Þ
bE1 ¼ −5; bE2 ¼ 1; ni ¼ 1; pi1 ¼ 10;βi1 ¼ 100;βi2

¼ 1000; i ¼ 1; 2: ð13Þ

The controlled outputs generated by (12) and (13) are illus-
trated by the solid black line and the dash-dotted blue line in

Fig. 1, respectively. Both closed-loop systems are stable, al-
though the sign of each bEi (i = 1, 2) differs in (12) and (13).
This phenomenon reveals an interesting difference between
the MIMO systems and the SISO systems, which means the
parameter bEi (1 ≤ i ≤m) for MIMO systems can be tuned in
wider intervals.

4 Parameter tuningmethod and the sufficient
condition for the closed-loop stability

From the experiments in the existing references (especially in
[3, 28, 33]), an ADRC tuning method can be summarized,
which is shown in the flowchart Fig. 2. The first step in the
flowchart is to choose the order ni for each channel, which is
sets 1 or 2 in most of the ADRC applications. Then βi 1;βi 2

…βi niþ1 and pi 1; pi 2;…pi ni for i = 1,…,m are set accord-

ing to their physical meanings and the design objects.
Considering formula (7) and (8), pi 1; pi 2;…pi ni are deter-

mined by the expected closed-loop performances, βi 1;βi 2

…βi niþ1 should guarantee the convergence of the ESOs. For
the initial value of bEi (i = 1, …, m), the sign (positive or

Table 1 (continued)

Plant
name

Plant transfer function

H'5

0:66e−2:6s

6:7sþ 1

0:66e−2:6s

6:7sþ 1

0:66e−2:6s

6:7sþ 1
0:66e−2:6s

6:7sþ 1

0:66e−2:6s

6:7sþ 1

0:66e−2:6s

6:7sþ 1
0:66e−2:6s

6:7sþ 1

0:66e−2:6s

6:7sþ 1

0:66e−2:6s

6:7sþ 1

2
6666664

3
7777775

H6

2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ
2:22

36sþ 1ð Þ 25sþ 1ð Þ

2
66666666664

3
77777777775

H'6

2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ
2:22e−2:5s

36sþ 1ð Þ 25sþ 1ð Þ

2
666666666664

3
777777777775
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negative) should be selected properly based on the engineer-
ing experiences.

In fact, the tuning method does not require the information
of the plant order or the relative degree, and implies the suffi-
cient condition of the closed-loop stability. Suchmathematical
law is given in the following theorem.

Theorem 2 For the closed-loop system formed by MIMO
plant (1) and the group of ADRC (7)(8), assumes that hDi(s),
1 ≤ i ≤m and ai(s), 1 ≤ i ≤m are Hurwitz polynomials, ni ≥ 1
for 1 ≤ i ≤m, and

bEidetBPi−1=detBPi > 0; 1≤ i≤m ð14Þ

where BP0 = 1, and BPi is the sub-matrix of Bp formed by the
intersection of the top i lines and the left i columns. Then the
closed loop is stable when the absolute value of each bEi, 1 ≤
i ≤m is big enough.

The proof is given in the appendix.

Remark 3 Since degai(s) = ni and all parameters of ai(s) are
positive, ai(s) is a Hurwitz polynomial when 1 ≤ ni ≤ 2. Hence,
for the low-order ADRC scheme, Theorem 2 can support for
the tuning method in Fig. 2 theoretically.

This tuning method is applied to the six LTI systems
H1(s), H2(s), …H6(s), of which the transfer functions are
listed in Table 1. Take H1(s) for example. Sets ni = 1, pi1 =
10, βi1 = 200, and βi2 = 1000 for i = 1, 2. Then, sets bE1 > 0
and bE2 < 0 based on (14), and enlarge their absolute values
until the closed loop is stable. The performance of the ADRC
scheme with such parameters is illustrated in the first line of

0 5 10 15 20
0

0.5

1

1.5

time

C
ha

nn
el

 1

0 5 10 15 20
0

0.5

1

1.5

time

C
ha

nn
el

 2

Output when b
E1

>0 & b
E2

<0

Output when b
E1

<0 & b
E2

>0

Reference Signal

Output when b
E1

>0 & b
E2

<0

Output when b
E1

<0 & b
E2

>0

Reference Signal

Fig. 1 Outputs of H0 under
ADRC with parameters (12) and
(13)

Start

Pick up a new channel (i), set the
ini�al value of bEi .

Choose in for every channel.

Choose ij and ijp for every
channel.

Simulate the subsystem formed by
all selected channels with ADRCs.

Is it stable?

All channels
selected?

Enlarge bEi .

Readjust for be�er performances.

End

Yes

Yes

No

No

Fig. 2 Tuning method of the decentralized low-order ADRC scheme
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Table 2 Decentralized ADRC with ni = 1 for all channels
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Table 2. In the simulation, the two outputs of H1(s) are con-
trolled to follow two step signals with different step times. The
ADRC design procedures are similar for the six plants accord-
ing to Fig. 2. Also, the controller parameters and simulation
results are given in Table 2.

Since many high-order industrial processes are substituted
by the models of reduced order with time delay in simulations
[37], further study is made for the system with the time-delay
term. The models with the time delay are absorbed from [31],

including the Wood-Berry model (H
0
1 ), the Vinante-Luyben

Table 2 (continued)

Pers Ubiquit Comput
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model (H
0
2 ), the Wardle-Wood model (H

0
3 ), the Ogunnaike-

Ray model with two inputs and two outputs (H
0
4 ), the

Ogunnaike-Ray model with three inputs and three outputs

(H
0
5 ), and the Alatiqi case (H

0
6 ). They are also listed in

Table 1, and all built for the industrial processes. As shown

in Table 1, H
0
1 sð Þ; H

0
2 sð Þ;… H

0
6 sð Þ can be obtained by

adding the proper time-delay terms to H1(s), H2(s), …
H6(s), respectively. And the same ADRC schemes with the

same parameters withHi, 1 ≤ i ≤ 6 are applied toH 0
i; 1≤ i≤6

correspondingly. The simulation results are given in Table 2.
Although the performances are lowered since the existence of
the time delay, the closed loops are still stable.

5 Integrity of the closed-loop system

The integrity means that the closed-loop system remains sta-
ble when some channels are turned off [3]. Hence, it is about
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Fig. 4 Single channel outputs of
H

0
0 controlled by ADRC scheme

with parameters in (16) when the
other channel is turned off
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0 under
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Table 3 Integrity test for H6 with the ADRC scheme

Pers Ubiquit Comput



www.manaraa.com

Table 3 (continued)
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Table 3 (continued)
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Table 4 Decentralized ADRC with ni = 2 for all channels
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the stability of the subsystem of the closed loop. Since
the MIMO system usually has more sensors and actua-
tors than the SISO system, and the channels can be
stopped by the hardware failure or other reasons, the
integrity is important when designing the controller for
the MIMO system.

In general, not all the open-loop stable MIMO plants can
achieve the integrity with the decentralized ADRC scheme.
For example, the integrity cannot be obtained for the system
H0 based on the ADRC. Since the determinant of the NZC
matrix of H0 is negative, bE1bE2 has to be negative according
to Theorem 1. Once the channel i with bEi > 0 breaks down

Table 4 (continued)
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(i = 1 or 2), the rest subsystem is formed by a SISO plant with
a positive NZC and an ADRC with bEj < 0, j ≠ i, which is
unstable based on the SISO case of Theorem 1.

Consequently, the criterions for the integrity are necessary.
The following theorem is established as a sufficient condition
for the high integrity, which means the closed-loop system is
stable when arbitrary many control signals are switched off.

Theorem 3 For the closed-loop system formed by MIMO
plant (1) and the ADRC scheme (7)(8), it is assume that
hDi(s), 1 ≤ i ≤m and ai(s), 1 ≤ i ≤m are Hurwitz polynomials,
ni ≥ 1 for 1 ≤ i ≤m, and Bp is a diagonally dominant matrix,
that is, ∣bii ∣ ≥ ∑1 ≤ j ≤m, j ≠ i ∣ bij∣ holds for 1 ≤ i ≤m. Then
there exists a group of controller parameters bEi; pi 1; pi 2;…

pi ni ;βi 1;βi 2…βi niþ1; i ¼ 1;…;m; satisfying

bEibii > 0; 1≤ i≤m; ð15Þ
such that the closed-loop system is stable and has high-
integrity property, which means the closed loop remains stable
when arbitrary many (but not more thanm − 1) ui(t) are forced
to be zero. The proof is given in the appendix.

In [3], the decentralized ADRC scheme is built to keep the
closed-loop stability when arbitrary m − 1 loops break down
for several kinds of MIMO systems. And the Theorem 3 im-
plies that the closed-loop stability can be guaranteed by the
decentralized ADRC scheme with the fixed parameters
when many arbitrary loops break down, provided that
the NZC matrix of the plant is diagonally dominant. In
fact, redefine the correspondence of the inputs and outputs

for the system H0, the plant H
0
0 in Table 1 is obtained, and

H
0
0 has a diagonally dominant NZC matrix. Hence, the

integrity can be obtained by the decentralized ADRC
scheme with the following parameters:

bE1 ¼ 1; bE2 ¼ 1; ni ¼ 2; pi1 ¼ 10;βi1 ¼ 100;βi2

¼ 1000; i ¼ 1; 2: ð16Þ

The controller performances are given in Figs. 3 and 4. In
detail, Fig. 3 illustrates the outputs when the two channels of

the system H
0
0 are available, and Fig. 4 shows the output of

channel 1 (or 2) when channel 2 (or 1) is turned off. It can be
seen that the closed-loop stability is obtained in all the circum-
stances, and the closed-loop performances are similar no mat-
ter the full channels are available or not.

Although Theorem 3 is proved for the plant with the diag-
onally dominant NZC matrix, the high-integrity property can
be obtained for more kinds of systems. That means the corre-
sponding closed loop is stable under any possible loop fail-
ures. The plantH6 with four inputs and four outputs is taken as
an example. And the ADRC scheme is the same as given in
Table 2. When several channels of H6 stop operating, the

transfer function model ofH6 becomes a new model with less
inputs and outputs, which is called the equivalent residue
model (ERM) in this paper. Table 3 lists all the possible
ERMs ofH6 and the corresponding closed-loop performances.
It can be seen that the system is stable in all the cases.

6 Further discussions

For the decentralized low-order ADRC scheme, the closed-
loop stability and integrity can be obtained based on Theorem
2 and Theorem 3 for the LTI MIMO plants. If the time-delay
terms of the plants are in a certain range, the ADRC design can
still work well even with the same parameters. The former
simulation experiments are all on the ADRC scheme withni-
= 1, 1 ≤ i ≤m. In fact, the same design method can also be
applied to the ADRC scheme with n

i
= 2, 1 ≤ i ≤m.

Hence, the corresponding simulations are made based on
the ADRC scheme with ni = 2, 1 ≤ i ≤m, of which the results
are given in Table 4, and part of the controller parameters are
from the experiments in [3, 31]. Moreover, the closed loop
stability still holds without readjusting the controller parame-
ters for the time-delay systems.

7 Conclusion

This study focuses on the design method of the decentralized
low-order ADRC scheme for the uncertain MIMO plants, of
which the orders and the relative degrees are unknown. The
corresponding design and tuning procedure is shown in the
flowchart (Fig. 2) and the related simulations. In the theoret-
ical discussion, the NZC matrix of the MIMO system is gen-
eralized from the SISO case. Based on the NZC matrix,
Theorem 1 establishes a necessary condition for the closed-
loop stability. Theorem 2 indicates that the ADRC scheme
with ni ≥ 1, 1 ≤ i ≤m can stabilize the open-loop stable plants.
According to Theorem 3, the former method is capable to
guarantee the integrity for the open-loop stable plant with
the diagonally dominant NZC matrix, which has applied to
more general plants in simulations. Theorems support for the
ADRC design method from the theoretical aspect. Moreover,
the decentralized ADRC schemes are designed for several
industrial processes in. Simulation results imply that the de-
signmethod is efficient for the ADRCs based on the 2-order or
3-order ESOs.
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Proof of the Theorems

Proof of Theorem 1

It will be shown that (11) is necessary for all the denominators
of the main diagonal elements in GM(s) to be Hurwitz.

Let dMij(s) be the denominator polynomial of the element in
the ith row and jth column of GM(s), and denote

dM sð Þ ¼ det sHD sð ÞA sð Þ þ HN sð ÞBY sð Þð Þ:

Then there is

dMii sð Þ ¼ det sHD sð ÞA sð Þ þ HN sð ÞBY sð Þð Þ
¼ dM sð Þ; 1≤ i≤m:

According to the definition of the determinant based on the
Leibniz formula [38], dM(s) can be expressed as

dM sð Þ ¼ dHM sð Þ þ dLM sð Þ;
where dHM sð Þ ¼ ∏

m

i¼1
bEisai sð ÞhDi sð Þ þ biibYi sð ÞhNiið Þ :. Since

degbYi(s) = ni, degai(s) = ni, and deghNij(s) =mij ≤mi = deg
hDi(s) for 1 ≤ i ≤m, 1 ≤ j ≤m, there are

degdLM sð Þ < degdHM sð Þ ¼ degdM sð Þ;
degbEisai sð ÞhDi sð Þ < degbiibYi sð ÞhNii:

Hence, the coefficients of the highest-order and the lowest-

order terms in dM(s) are ∏
m

i¼1
bEi and dM(0) = det BP, respective-

ly. So, if dM(s) is Hurwitz, then (11) holds.

Proof of Theorem 2

To prove Theorem 2, the following Lemma is needed:

Lemma 1 Assume P(s) and Q(s) are both polynomials with
real coefficients, P(s) is Hurwitz with degP(s) = n, P(0)Q(0) >
0, and degQ(s) ≤ n + 1. Then there exists some positive κ0
such that κsP(s) +Q(s) is Hurwitz for any κ > κ0.

Proof of Lemma 1 Without loss of generality, assume that
P(0) > 0 and Q(0) > 0. Since P(s) is Hurwitz, all the coef-
ficients of P(s) are positive. And, it is enough to prove
that all the roots of sP(s) + κ−1Q(s) are on the left half
plane when κ > κ0.

According to the continuous dependence of the roots on the
polynomial’s coefficients, the roots of sP(s) + κ−1Q(s) move
towards the roots of sP(s) correspondingly as κ increases.
When n of the n + 1 roots of sP(s) + κ−1Q(s) are close enough
to the roots of P(s), they will be on the left half plane, and the
real part of their product multiplied by (−1)n will be positive.

Consequently, if the (n + 1)th root of sP(s) + κ−1Q(s) is the
conjugation of one among the first n roots, then the (n + 1)th
root is also on the left half plane. Otherwise, if the (n + 1)th
root of sP(s) + κ−1Q(s) is not a conjugation of any other root, it
has to be a real number, and the product of the other n roots
multiplied by (−1)n is real positive. Since (sP(s) +Q(s))|s = 0 =
Q(0) > 0, the (n + 1)th root of sP(s) + κ−1Q(s) is a negative real
number according to the relationship between roots and coef-
ficients. That completes the proof.

Proof of Theorem 2 It will be proved by induction. For m = 1,
the plant (1) is a SISO system, the inequality (14) becomes
bE1bP1 > 0, and the statement holds based on Theorem 2 in [33].

Suppose the statement holds when m equals the integer
K ≥ 1. That is, when ni ≥ 1 for i = 1,…, K, there exists a group
of controller parameters bEi; pi 1; pi 2;…pi ni ;βi 1;βi 2…

βi niþ1; i ¼ 1;…;K; satisfying bEi det BPi − 1/ det BPi > 0,
such that all the elements in GMK(s) are stable transfer func-
tions. Hence, dMK(s) and ai(s), 1 ≤ i ≤K are all Hurwitz.

For m =K + 1, there is

dKþ1 sð Þ ¼ det sHD sð ÞA sð Þ þ HN sð ÞBY sð Þð Þ

¼
bE1sa1hD1 þ hN11bY1 ⋯ hN1KbYK hN1 Kþ1bY Kþ1

⋮ ⋱ ⋮ ⋮
hNK1bY1 ⋯ bEKsaKhDK þ hNKKbYK hN K Kþ1bY Kþ1

hN Kþ1 1bY1 ⋯ hN Kþ1 KbYK bE Kþ1saKþ1hD Kþ1 þ hN Kþ1 Kþ1bY Kþ1

��������

��������
¼

bE1sa1hD1 þ hN11bY1 ⋯ hN1KbYK hN1 Kþ1bY Kþ1

⋮ ⋱ ⋮ ⋮
hNK1bY1 ⋯ bEKsaKhDK þ hNKKbYK hN K Kþ1bY Kþ1

0 ⋯ 0 bE Kþ1saKþ1hD Kþ1

��������

��������
þ

bE1sa1hD1 þ hN11bY1 ⋯ hN1KbYK hN1 Kþ1bY Kþ1

⋮ ⋱ ⋮ ⋮
hNK1bY1 ⋯ bEKsaKhDK þ hNKKbYK hN K Kþ1bY Kþ1

hN Kþ1 1bY1 ⋯ hN Kþ1 KbYK hN Kþ1 Kþ1bY Kþ1

��������

��������
¼ bE Kþ1saKþ1 sð ÞhD Kþ1 sð ÞdMK sð Þ þ bY Kþ1 sð ÞqKþ1 sð Þ;
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where qK + 1(s) is defined as

qKþ1 sð Þ ¼
bE1sa1hD1 þ hN11bY1 ⋯ hN1KbYK hN1 Kþ1

⋮ ⋱ ⋮ ⋮
hNK1bY1 ⋯ bEKsaKhDK þ hNKKbYK hN K Kþ1

hN Kþ1 1bY1 ⋯ hN Kþ1 KbY K hN Kþ1 Kþ1

��������

��������
:

According to the induction hypothesis, there exists a group
of parameters bEi; pi 1; pi 2;…pi ni ; βi 1;βi 2…βi niþ1; i ¼
1;…;K; such that dMK(s) and ai(s), 1 ≤ i ≤K are all Hurwitz.
Then choose pKþ1 1; pKþ1 2;…pKþ1 nKþ1

;βKþ1 1;βKþ1 2

…βKþ1 nKþ1þ1 such that aK + 1(s) is Hurwitz. Hence, aK +

1hD K + 1dMK is a Hurwitz polynomial.
It can be verified by the definition of the determinant based

on the Leibniz formula [38] that

degqKþ1 sð Þ≤degdMK sð Þ
þ max

1≤ i≤Kþ1
deghN Kþ1 i≤degdMK sð Þ þ deghD Kþ1:

Considering degaK + 1 = deg bY K + 1, there is

degbY Kþ1qKþ1≤1þ degaKþ1hD Kþ1dMK : ð17Þ

Then, according to Lemma 1, dK + 1 = bE K + 1saK + 1hD K +

1dMK + bY K + 1qK + 1 is Hurwitz when

dKþ1 0ð Þ ∏
Kþ1

i¼1
bEi > 0

and ∣bE K + 1∣ is big enough.
Since dK + 1(0) = det Bp and bEi det BPi − 1/ det BPi > 0, 1 ≤

i ≤K, there is

bE Kþ1detBP K=detBP Kþ1 > 0:

Then, the induction is finished.
Considering dMij(s) = aj(s)dM(s), 1 ≤ i ≤m, 1 ≤ j ≤m, all

the denominators inGM(s) are Hurwitz when dM(s) and aj(s),
1 ≤ j ≤m are Hurwitz. That completes the proof.

Proof of Theorem 3

To prove Theorem 3, the following Lemma is needed:

Lemma 2 Assume Pi(s) and Qi(s), 1 ≤ i ≤ k are polynomials
with real coefficients, Pi(s), 1 ≤ i ≤ k are all Hurwitz, and
Pi(0)Qi(0) > 0, degQi(s) ≤ degPi(s) + 1 for 1 ≤ i ≤ k. Then there
exists some positive κ0 such that κsPi(s) +Qi(s), 1 ≤ i ≤ k are
Hurwitz for any κ > κ0.

Proof of Lemma 2 Apply Lemma 1 to sPi(s) +Qi(s) for each i,
then κ0i, 1 ≤ i ≤ k are obtained. Let κ = max {κ0i| 1 ≤ i ≤ k}.
The proof is finished.

Proof of Theorem 3 It will be proved by induction. For
m = 1, the plant (1) is a SISO system, the inequality
(15) becomes bE1bP1 > 0. Hence, the closed-loop stabil-
ity is obtained according to Theorem 2, and the integ-
rity follows.

Suppose the statement holds when m equals the inte-
ger K ≥ 1. That is, when nj ≥ 1 for j = 1, …, K, there
exists a group of controller parameters bEj; pj 1; pj 2;…

p j n j
;β j 1;β j 2…β j n jþ1; j ¼ 1;…;K; satisfying bEjbjj >

0, such that GMK s; Sð Þ are stable for any possible S,
where S⊈ 1;…;Kf g is a set of the channel indexes, and
GMK s; Sð Þ denotes the closed-loop transfer function
when the channels in S break down. And dMK s; Sð Þ; qK
s; Sð Þ can be defined similarly. Hence, GMK(s;∅) =
GMK(s), dMK(s;∅) = dMK(s), dMK s; Sð Þ;S⊈ 1;…;Kf g and
aj(s), 1 ≤ j ≤ K are all Hurwitz.

Suppose m =K + 1. If K + 1 ∈ S, there is

dKþ1 s; Sð Þ ¼ dK s; S= K þ 1f gð Þ:

Then, according to the induction hypothesis, there exists a
group of parameters bEj; p j 1; p j 2;…pj n j

;β j 1;β j 2…

β j n jþ1; j ¼ 1;…;K; such that dKþ1 s;Sð Þ; S⊈ 1;…;Kf g;
and aj(s), 1 ≤ j ≤K are all Hurwitz.

If K þ 1∉S, similar to the proof of Theorem 2, there is

dKþ1 s; Sð Þ ¼ bE Kþ1saKþ1 sð ÞhD Kþ1 s; Sð ÞdMK s;Sð Þ
þ bY Kþ1 sð ÞqKþ1 s; Sð Þ:

T h e n c h o o s e pKþ1 1; pKþ1 2;…pKþ1 nKþ1
;βKþ1 1;

βKþ1 2…βKþ1 nKþ1þ1 such that aK + 1(s) is Hurwitz. Hence,
aKþ1hD Kþ1 s; Sð ÞdMK s; Sð Þ is a Hurwitz polynomial.

Similar to (17), there is

degbY Kþ1 sð ÞqKþ1 s; Sð Þ≤1
þ degaKþ1 sð ÞhD Kþ1 s; Sð ÞdMK s; Sð Þ; ð18Þ

for any S⊈ 1;…;Kf g: Thus, according to the Lemma 2, dKþ1

s; Sð Þ is Hurwitz when

dKþ1 0ð Þ ∏
Kþ1

j¼1
bEj > 0 ð19Þ

and ∣bE K + 1∣ is big enough. Considering Bp is diagonally
dominant, dKþ1 0; Sð Þ ¼ detBp Sð Þ has the same sigh with
∏1 ≤ j ≤K + 1, j ∉ S bjj. Since bEjbjj > 0, 1 ≤ j ≤K, (19) is satis-
fied when

bE Kþ1bKþ1 Kþ1 > 0:

Hence, the induction is completed.

Pers Ubiquit Comput



www.manaraa.com

References

1. Garridoa J, Vazqueza F, Morillab F (2012) Centralized multivari-
able control by simplified decoupling. J Process Control 22(6):
1044–1062

2. Shinskey F (1996) Sistemas de control de procesos: aplicación,
diseño y sintonización, Vol. 2. In: McGraw-Hill

3. Tian L, Li D, Huang C e (2012) Decentralized controller design
based on 3-order active-disturbance-rejection-control, in:
Proceedings of the 10th World Congress on Intelligent Control
and Automation (WCICA), pp. 2746–2751

4. Vázquez F, Morilla F, Dormido S (1999) An iterative method for
tuning decentralized pid controllers. In: Proceedings of the 14th
IFAC World Congress, pp 491–496

5. Huang H, Jeng J, Chiang C, Pan W (2003) A direct method for
multi-loop pi/pid controller design. J Process Control 13(8):769–
786

6. Lee M, Lee K, Kim C, Lee J (2004) Analytical design of multiloop
pid controllers for desired closed-loop responses. AICHE J 50(7):
1631–1635

7. Xiong Q, Cai W (2006) Effective transfer function method for
decentralized control system design of multi-input multi-output
processes. J Process Control 16(8):773–784

8. Han J (1998) Auto-disturbance rejection control and its applica-
tions. Control and Decision 13(1):19–23 (In Chinese)

9. Gao Z, Huang Y, Han J (2001) An alternative paradigm for control
system design, in: Proceedings of the 2001 IEEE Conference on
Decision and Control, Vol. 5, Orlando, FL, USA, pp. 4578–4585

10. Han J (2008) Active disturbance rejection control technique.
National Defense Industry Press, Beijing (In Chinese)

11. Han J (2009) From PID to active disturbance rejection control.
IEEE Trans Ind Electron 56(3):900–906

12. Xia Y, Shi P, Liu G, Rees D, Han J (2007) Active disturbance
rejection control for uncertain multivariable systems with time-de-
lay. Control Theory and Applications, IET 1(1):75–81

13. Huang H, Wu L, Han J, Feng G, Lin Y (2004) A new synthesis
method for unit coordinated control system in thermal power plant:
ADRC control scheme, in: 2004 International Conference on Power
System Technology, pp. 133–138

14. Miklosovic R, Gao Z (2004) A robust two-degree-of-freedom con-
trol design technique and its practical application, in: Proceedings
of the IASAnnualMeeting IEEE Industry Applications Society, pp.
1495–1502

15. Sun B, Gao Z (2005) A dsp-based active disturbance rejection
control design for a 1-kw h-bridge dc-dc power converter. IEEE
Trans Ind Electron 52(5):1271–1277

16. Wang L, Tong C, Peng K, Zhang F (2007) Active disturbance
rejection control and chaos optimization for strip width and gauge
multivariable systems. Control and Decision 22(3):304–317 (In
Chinese)

17. Wang J, Ma H, Cai W Haitao, Shui B. Nie (2008) Research on
micro quadrotor control based on ADRC, Journal of Projectiles,
Rockets, Missiles and Guidance 28 (3): 31–40, (In Chinese)

18. B. Liu, Y. Xia, M. Fu, M. Wang, H. Wu, Active decoupling for
double-loop delayed systems with ADRC techniques, International
Journal of Innovative Computing, Information and Control 5
(10(B)) (2009) 3367–3376

19. XueW,HuangY (2011) The active disturbance rejection control for
a class of mimo block lower-triangular system. In: Proceedings of
the 2011 Chinese Control Conference, pp 6362–6367

20. W. Xue, On theoretical analysis of active disturbance rejection con-
trol, Ph.D. thesis, Institute of Systems Science, Academy of
Mathematics and Systems Science, Chinese Academy of
Sciences, (In Chinese) (2012)

21. Guo B, Zhao Z (2012) On convergence of non-linear extended state
observer for multi-input multi-output systems with uncertainty.
Control Theory and Application, IET 6(15):2375–2386

22. Guo B, Zhao Z (2013) On convergence of the nonlinear active
disturbance rejection control for mimo systems. SIAM J Control
Optim 51(2):1727–1757

23. Fliess M, Join C (2009) Model-free control and intelligent pid con-
trollers: towards a possible trivialization of nonlinear control?, in:
15th IFAC Symposium on System Identification, Vol. 15, pp.
1531–1550

24. Soni MG, Chitara DR, Soni P (2011) Model order reduction-a time
domain approach, IJCA Special Issue on Electronics, Information
and Communication Engineering ICEICE (2): 6–9, published by
Foundation of Computer Science, New York, USA

25. Isaksson AJ, Graebe SF (1999) Analytical pid parameter expres-
sions for higher order systems. Automatica 35(6):1121–1130

26. Li D, Ji Y, Li M, Liu J (2011) Pid controller design for a class of
distributed parameter systems. In: Proceedings of the 30th Chinese
Control Conference, pp 1021–1026

27. Longatte E, Baj F, Hoarau Y, BrazaM, Ruiz D, Canteneur C (2013)
Advanced numerical methods for uncertainty reduction when
predicting heat exchanger dynamic stability limits: review and per-
spectives. Nucl Eng Des 258:164–175

28. X. Chen, Active disturbance rejection controller tuning and its ap-
plications to thermal processes, Master’s thesis, Tsinghua
University, (in Chinese) (2008)

29. Zhao C, Huang Y (2010) ADRC based integrated guidance and
control scheme. Journal of Systems Science and Mathematical
Sciences 30(6):742–751 (In Chinese)

30. Zhao C, Huang Y (2010) ADRC based integrated guidance and
control scheme for the interception of maneuvering targets with
desired los angle. In: Proceedings of the 2010 Chinese Control
Conference, Beijing, China, pp 6192–6196

31. Li D, Gao F, Xue Y, Lv C (2007) Optimization of decentralized pi/
pid controllers based on genetic algorithm. Asian Journal of Control
9(3):306–316

32. Zhao C (2011) Capability of ADRC for plants with unknown orders
and/or uncertain relative degrees: Theory and applications, Ph.D.
thesis, Institute of Systems Science, Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, (In Chinese)

33. C. Zhao, Y. Huang, Design ADRC for two special kinds of systems,
in: Proceedings of the 2011 Chinese Control Conference, Yantai,
China, 2011, pp. 229–234

34. Huang Y, Zhang W (2002) Development of active disturbance re-
jection controller. Control Theory and Applications 19(4):485–492
(In Chinese)

35. Zhao C (2010) Capability of ADRC for minimum-phase plants
with unknown orders and uncertain relative degrees. In:
Proceedings of the 2010 Chinese Control Conference, Beijing,
China, pp 6121–6126

36. Zhao C, Li D, Control design for the SISO system with the un-
known order and the unknown relative degree, ISA Transactions
(In Press), doi:https://doi.org/10.1016/j.isatra.2013.10.001

37. Kubalčík M, Bobál V (2012) Predictive control of higher order
systems approximated by lower order time-delay models.
WSEAS Transactions on Systems 11(10):607–616

38. Hazewinkel M (2001) Encyclopedia of mathematics. Springer

Pers Ubiquit Comput

https://doi.org/10.1016/j.isatra.2013.10.001


www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


	Decentralized low-order ADRC design for MIMO system with unknown order and relative degree
	Abstract
	Introduction
	Control design and preliminary analysis
	Necessary condition for the closed-loop stability
	Parameter tuning method and the sufficient condition for the closed-loop stability
	Integrity of the closed-loop system
	Further discussions
	Conclusion
	Proof of the Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	References


